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Introduction

Aims

A given property of a cone is that a plane parallel to its slant intersects it with a parabolic
curve. This article investigates the 3-dimensional equation of a (infinite) cone with a slant
length along the z-axis such that any intersection with a plane perpendicular to the z-axis
is a parabolic curve (For simplicity, this equation will assume the graph to be symmetrical
about the x — z plane). To further this investigation, I will derive formulae such that other
types of curves can be generated from this intersection, as opposed to a parabola. Note that
this does not (and cannot) guarantee that a cone will be formed, but a 3D structure can be
derived nonetheless.

Methodology for derivation

To derive a formula of a cone with the specifications layed out in the ‘Aims’ section, I will
attempt first to find the equation of the curve generated by a plane perpendicular to the
x-axis. For some 2/, this equation will be of the form z = f(y), where 2’ is constant. We
will later generalise 2’ as a variable x to achieve the full equation of the cone in the form

z = f(m,y)-

For clarity, I will proceed with the diagram below to illustrate the desired product along
the z — x and z — y plane (for visual cohesion, the dashed line represents an arbitrary
circular intersection with the cone):

Figure 1: z —y & z — x projections

For generality, I have let 6 be an arbitrary angle to generalise the angle of the cone. Ad-
ditionally, note how a cone will project an isosceles triangle over the z — x plane. In order
to produce an equation for a parabola at an arbitrary x = 2’ intersection, I will use three
points (two symmetrical about the z — x plane), and one lying on the bottom slope of the
isosceles triangle.



Deriving the equation of the cone

Finding the points of intersection

I will proceed first by identifying three particular points of intersection with the cone along
the plane x = 2/. Because these points are along x = z’, I need only find the z and y
co-ordinates. To do so, I will use the graphs in figure 1 to find the relevant points. Below is
the x — z projection of the cone, with the line projection of the plane x = 2’

The first point that can be identified is the intersection of x = x; and the base of the triangle.
Intuitively, as the cone is specified (in ‘Aims’) to be symmetrical about the z —  plane, this
intersection must lie on y = 0. The z value, by trigonometry, is z; tan(#); I shall define this
point as M. The next two points [ will derive by creating another intersection with the cone.
In figure 2, I showed an arbitrary circular intersection with the cone. I shall do so again, but
not arbitrarily. Let this intersection be defined such that the plane x = 2’ bisects it. I will
define its projection on the z — x plane to be AB. Furthermore, I shall define its intersection
with x = 2’ to be R. For reference, the points R; & Ry are shown below in the z — y plane,
which have the same z co-ordinate as R:

Figure 2: Projections to find R



I can identify the height of R by adding the vertical component of RB’ to the height of
B. Note that C'M is the same length and orientation as M B. Hence the height of B is
22’ tan(f). Finding the vertical component of RB is a harder task, but can be achieved by
creating a horizontal line about B, as shown below:

From here the geometry is clear. BMR = 5 — 0, and as MRB is an isosceles triangle,
BRB' = bz RBB' = Z — ¢ Hence, B'R = 2/ tan(% — %). Therefore the z co-ordinate
of Ris 2’ tan(T — %) + 22/ tan(

Note how the circular intersection of the cone is chosen such that R is in the centre.
This implies that R; & Ry are the maximum distance from the z — x plane, as seen
above. Hence, the magnitude of the y co-ordinate is equivalent to the radius of the circular
intersection. We can see from the z — x projection, that this is the distance RB. As a

result, the y co-ordinates of Ry and Ry is £— (“;_ 7y
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In full, the points are below, along with substitutions in terms of r and h for cohe-
sion in later sections:

o (:c’, o tan(Z — g) + 2x’tan(9))) — (2',7,h)

cos(F—5

e (e ) 2O
4 2

o (2/,0,2"tan(0))

Note how each co-ordinate scales linearly with z/; this will be important later.



Defining a parabola and cone from the three points

All three points share the same = co-ordinate. To reiterate, as the slant of the cone also
lies on the same x co-ordinate, the intersection of the cone with the plane = 2’ must be a
parabola. Hence, the three points must lie on a parabolic curve on the x = 2’ plane. This is
shown below:

To find the equation of the parabola that intersects these points I shall write it in the form
z = f(y) = ay®* + c¢. This is the most general equation that can be used, as the cone
is specified (in ‘aims’) to be symmetrical about the z — = plane, and an additional ‘+by’
implies a translation parallel to the y-axis. The algebra follows:

z = f(y) = ay® + 2 tan()
f(r) =h = ar® + 2’ tan(9)
h — 2’ tan(6)

2

. fly) = 2" tan(8) +

Both a and c are specified, hence this is the only parabola that can be formed from these 3
points. Now the entire cone can be generalised by substituting x’ for x. Arbitrarily where
¢ = %, the equation below is formed:

h—a tan(&)y2

r2

<2xtan (% + :Utan % —

¢ (W)+
Z=Xxltan | —
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— ztan (g) +
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(24 V3) ¢
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Note how for a constant x, the equation becomes a quadratic in terms of y, as intended.
However, for a constant y = ¢/, the equation becomes of the form ax + g, which (in general)

looks like the curve below:

This is a hyperbola, because this is an open intersection of the cone that is not parallel to

its slant. This intersection is shown below:

A 3-Dimensional plot of the cone is shown below:
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Deriving other equations from other curves

General cases

Note that it is only because I was aiming for a cone that I used the equation z = f(y) =
ax? + c¢. However, there are other curves that can be ‘forced’ through the three points. To
select these curves, I will set these restrictions on their equations below:

e [t must be an even function

e There can be no asymptotes (This is not strictly necessary, but it allows for more
generality later on)

e The equation must intersect (0,0)

e The graph must approach z = 0 as x approaches 0. This ensures the 3-D structure is
closed on the z-axis

Given these restrictions, I can ‘force’ the curves through the 3 points by expressing it as
f(y) = ag(y) + ¢, where g(y) is a general equation for the curve, and f(y) is the particular
case where it intersects the three points. I can now proceed to generalise the method used
earlier:

z = f(y) = ag(y) + 2’ tan(0)
f(r) =h=ag(r) + 2’ tan(9)

_ h—2a'tan(0)
()
" f(y) = 2" tan(0) + (Iz_g(—:jn@) 9(y)

Note that, unlike a parabola, there is no guarantee that f(y) is unique for each type of
curve. As before we have ‘h — 2’ tan(6)’ in the numerator. This permits a small amount of
simplification shown below:

"tan o tan(Z — ¢ 2/ tan — 2/ tan
x'tan<e>+(’“z(—fj@)g@):mn(m( tan(T — £) + 24 tan(9)) — 't <e>)g(y)




Using this formula, I have generated equations for different shapes, each of which come from

different expressions for g(y). They are listed below:

9(y) f(z,y)
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Special cases

In this section, I would like to discuss two equations that do not fit the generalisation
f(y) = ag(y) + ¢. The first case is |z|. Earlier, I mentioned that each of the three points
was a scale of 2/, Therefore the linearity of |x| implies that f(z,y) does not vary with x,
and hence does not meet the z-axis at x=0.

However, the equation can be adapted by a small degree such that it does. The first
thing to note is that f(z,y) = ax + %g(y) =ax + %g(y) where a, b, c,d € R. Drawing
focus on how z looks with respect to y we need only consider %g(y), as axr has no

influence on it. Now consider g(y) = |y|*!. This results in the equation below:

bx bx 11
Note how lim ( —%+5 | approaches a constant value. However, for lim ( —%+= ), the value
o0 \ lcz+d| 20 \ lez+d|
approaches co. As a result, lim (n|y|*! becomes the equation of a straight line. As the co-
n— o0

‘1.1

efficient of |y|"! becomes larger (from a smaller value of x), the curve like-properties become

more apparent:

However, the line ’snapping’ to the z-axis happens over a finite region of . In order to make
this instantaneous, effectively defining a plane over an infinitesimally small dx, I used these
equation:

g(y) = lim |y

n—1t

(:ctan (0) 4+ z tan (% — g)) "

f(z,y) = lim | ztan(0) +
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The second special case is sec(x) — 1. The restriction this does not obey is that it is asymp-
total. This is problematic as the generalisation of f(y) relies on transforming g(z) onto the
three points by stretching the graph along the z-axis. If the three points lie past, or on the
asymptote, the transformation will not work, or yield bizarre results due to the periodicity
of the function. To work around this, I have devised a method below, by changing the
generalisation of f(y), to stretch the graph parallel to the y — axis:

z = f(y) = sec(my) — 1 + 2’ tan(0)
f(r) =h =sec(mr) — 1+ 2’ tan(6)
arcsec (h + 1 — 2/ tan(0))

r
arcsec (h + 1 — 2/ tan(h))

r

“m =

" fy) = sec ( y) — 1+ 2’ tan(f)

Note that I did not need to use this method exclusively for the secant function; it is entirely
possible that some curves prior could have drastically different equations if I applied this
method. Either way, the final result for g(y) = sec(y) — 1 is below:

arcsec (2z tan (0) + ztan (2 — £) + 1 — z tan (6))

)

arcsec (2ztan (0) + xtan (Z — ) + 1
= wxtan (a) + sec ( (6) — (i-2) )y —1
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